首页 最新教育资讯正文

三角形勾股定理公式及证明方法

xiawuyouke 最新教育资讯 2020-10-21 17:33:37 335 0 高考状元

勾股定理是指直角三角形的两条直角边的平方和等于斜边的平方。接下来分享三角形勾股定理公式及证明方法

三角形勾股定理公式及证明方法

三角形勾股定理公式

1.基本公式

在平面上的一个直角三角形中,两个直角边边长的平方加起来等于斜边长的平方。如果设直角三角形的两条直角边长度分别是a和b,斜边长度是c,那么勾股定理的公式为a²+b²=c²

2.完全公式

a=m,b=(m²/k-k)/2,c=(m²/k+k)/2其中m≥3

(1)当m确定为任意一个≥3的奇数时,k={1,m²的所有小于m的因子}

(2)当m确定为任意一个≥4的偶数时,k={m²/2的所有小于m的偶数因子}

3.常用公式

(1)(3,4,5),(6,8,10)……3n,4n,5n(n是正整数)。

(2)(5,12,13),(7,24,25),(9,40,41)……2n+1,2n²+2n,2n²+2n+1(n是正整数)。

(3)(8,15,17),(12,35,37)……2²*(n+1),[2(n+1)]²-1,[2(n+1)]²+1(n是正整数)。

(4)m²-n²,2mn,m²+n²(m、n均是正整数,m>n)。

三角形勾股定理证明方法

三角形勾股定理公式及证明方法

设△ABC为一直角三角形,其直角为∠CAB。

其边为BC、AB和CA,依序绘成四方形CBDE、BAGF和ACIH。

画出过点A之BD、CE的平行线,分别垂直BC和DE于K、L。

分别连接CF、AD,形成△BCF、△BDA。

∠CAB和∠BAG都是直角,因此C、A和G共线,同理可证B、A和H共线。

∠CBD和∠FBA都是直角,所以∠ABD=∠FBC。

因为AB=FB,BD=BC,所以△ABD≌△FBC。

因为A与K和L在同一直线上,所以四边形BDLK=2△ABD。

因为C、A和G在同一直线上,所以正方形BAGF=2△FBC。

因此四边形BDLK=BAGF=AB²。

同理可证,四边形CKLE=ACIH=AC²。

把这两个结果相加,AB²+AC²=BD×BK+KL×KC

由于BD=KL,BD×BK+KL×KC=BD(BK+KC)=BD×BC

由于CBDE是个正方形,因此AB²+AC²=BC²,即a²+b²=c²。

免费下载:微信扫码关注网站官方公众号【中小学趣味数学 qwshuxue
趣味数学二维码
1、回复 “101”免费领取《【小学奥数】学er思内部题库word可打印
2、回复 “102”免费领取《【记忆力教程】快速高效学习教程
3、回复 “103”免费领取《一分钟速算教程
4、回复 “104”免费领取《Top 32经典英文启蒙绘本PDF+MP3
5、回复 “105”免费领取《儿童英语绘本195本【PDF版】
6、回复 “106、107、108”免费领取《更多神秘礼物……
版权说明

本文仅代表作者观点,不代表本站立场。
本文系作者授权发表,未经许可,不得转载。

本文链接:http://seowhen.com/30328.html

发表评论

评论列表(0人评论 , 335人围观)
☹还没有评论,来说两句吧...

最近发表

小学趣味数学题及答案_教案「免费下载」_小故事-阿尔法趣味数学网

http://seowhen.com/

|

Powered By Z-BlogPHP 阿尔法趣味数学网

使用手机软件扫描微信二维码

关注我们可获取更多热点资讯

www.allfloor.org