费尔马光行最速原理
费尔马光行最速原理,今天就让阿尔法趣味数学网小编来给同学们带来这个费尔马光行最速原理
每天10分钟头脑大风暴,开发智力,培养探索能力,让你成为学习小天才。
故事适合年级:小学二年级
【费尔马光行最速原理】趣味小故事:
,费尔马不仅是位数学家,他在物理学中也有所建树,“光行最速原理”就是由他发现的。由此我们可以解下列问题:由光源A射出的光线,经平面镜MN反射后照到点B,求光走过的路线。
解:作A关于MN的对称点A′,连A′B交MN于点P,则光线将由A射到P,经反射后到B,这条路线是“最短路线”。实际上,对MN上任一非P的点P,都有AP′+P′B=AP′+P′B>A′B=AP+PB。即这条路线最短。
由此可得到物理学中的反射定律:光经平面镜反射时,入射角等于反射角,在图1中,取P点处法线PQ,则有∠1=∠2。
在△ABC中,AD、BE、CF分别为三边上的高,△DEF称为△ABC的垂足三角形,可以证明△ABC的重心H是△DEF的内心(图2)。
实际上,由∠BEA=∠BDA=90°,知B、D、E、A共圆,于是∠CDE=∠BAC。同样,由A、F、D、C共圆,可知∠BDF=∠BAC,于是∠CDE=∠BDF。从而可知DA平分∠EDF。
同理FC平分∠DFE,EB平分∠DEF。故H是△DEF的内心。
如作D关于AB的对称点D1,可知∠DFB=∠D1FB=∠AFE,于是,D1、F、E在一直线上。同样可知,D关于AC的对称点D2也在直线EF上,即D1、F、E、D2四点在一条直线上。
现在,我们来看由法格拉洛提出的一个问题:在△ABC的每条边上各取一点D、E、F,△DEF称为△ABC的内接三角形。试在锐角三角形ABC的所有内接三角形中,求周长最短的三角形。
费尔马提出了一种解法,这个解法分成三步来解:
(1)设D是BC上固定点,求此时的周长最短的内接三角形。
作D关于AB、AC的对称点D1、D2,连D1D2交AB、AC于E、F,则△DEF为所求。实际上,对于△ABC的任一内接△DE′F′,有
DE′+E′F′+F′D=D1E′+E′F′+F′D2
<< < 1 2 > >>更多小学趣味数学故事,可以微信搜索qwshuxue或者中小学趣味数学,获得更多趣味数学故事的文章。
阿尔法趣味数学小课堂:数学小故事
喜欢更多数学小故事,可以给小编留言,小编会在第一时间给大家带来喜欢有趣的数学故事。
版权申明:部分图片来源网络,转载请注明【阿尔法趣味数学网(www.allfloor.org)】。

2、回复 “102”免费领取《【记忆力教程】快速高效学习教程》
3、回复 “103”免费领取《一分钟速算教程》
4、回复 “104”免费领取《Top 32经典英文启蒙绘本PDF+MP3》
5、回复 “105”免费领取《儿童英语绘本195本【PDF版】》
6、回复 “106、107、108”免费领取《更多神秘礼物……》
- 上一篇: 数学黑洞
- 下一篇: 决定泊松一生的数学趣题